

 UNIVERSITY OF TEESSIDE

Procedural
Animation
Maya Cloth Simulation plug-in

Paul Demeulenaere
15/05/2008

Contents

CONTENTS 2

INTRODUCTION 3

CHAPTER 1 – ANALYSIS 4

I. Cloth representation 4

1. General Idea 4

2. Hooke’s law 4

3. Euler Integration 5

II. Obstacles 5

1. Collision detection 5

2. Reaction forces 6

CHAPTER 2 – DESIGN 7

I. Cloth 7

1. Particles 7

2. Cloth 8

II. Maya 8

1. Command 8

2. Node 9

CHAPTER 3 – IMPLEMENTING AND RESULT 10

I. The OpenGL application 10

II. Maya plug-in 11

III. MEL 13

CONCLUSION 14

Introduction

 Maya, originally developed by Alias Systems Corporation, is Autodesk software. It is a 3D

modeling software such as 3D studio Max. There are two ways to develop Maya plug-in, the first is

the MEL (for Maya Embedded Language) which is a scripting language, the second is given by the

C++ Maya API (Application Programming Interface) which permit to give compiled code in a kind of

dynamic link library name, a “mll” file. In this project, the most of computation are done thanks to

Maya API and the user interface is created by the MEL language.

 The goal of this project is the implementation of a simple cloth simulation integrated in the

Maya Software. There are two main methods to simulate a cloth. The first one is really simple; we

define a particle system where each particle is linked to their neighbours by springs. The second one,

is more complex, but the effect is faster and more realistic, it is difficult to explain in some words,

this method is describe in “Large Steps in Cloth Simulation” from David Baraff and Andrew Witkin

and use an implicit integration method. This last one could be really interesting, but, due to a leak of

time, it was the first which has been chosen.

 This report will be divided in a few parts. First, the mathematical concept and an idea of the

algorithms implemented will be described in the analysis part. Then, there will be some words about

the design and organisation of the application. To finish, the implementation and the application

resulted will be presented.

Chapter 1 – Analysis

This section will explain the mathematical concept to simulate a cloth thanks to spring links,

and how it is possible to detect the collision in this representation.

I. Cloth representation

1. General Idea

There is a lot of way to represent the simulation of a cloth. One of them is done thanks to

spring connected particles. The cloth is represented with a particle field, each particle are connected

to their neighbours by spring. It is possible to give only four links per particle but it is more

interesting to have more connections for a realistic effect even if, with this technique, the cloth

become very slow and tensile.

Figure 1 : Springs links

2. Hooke’s law

The Hooke’s law describes forces given by a spring when there is a compression. It is name

and the end of the 17th century by Robert Hooke. This law can be sum up by “ut tensio sic vis”, or in

English, “as the extension, so the force”. In this cloth simulation, the force of a spring will be

described by this equation.

𝐹𝑃1→𝑃2
=

𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝐿𝑛𝑜𝑟𝑚𝑎𝑙

𝐿𝑛𝑜𝑟𝑚𝑎𝑙
×

𝑃1 − 𝑃2

 𝑃1 − 𝑃2
× ∆𝑡

L current represent the current length between the particular P1 and P2, L normal, the

normal length. ∆𝑡 is more a force scale than a value depending of the time.

3. Euler Integration

 The Euler method is the simplest method to solve a basic integration. It generate an

approximation of the movement of the particles displace with spring. A very small time step is

defined. The forces insides the cloth are computed and particles displaced for each iteration. This

method is easy but also very slow because, to be correct, the time step should be very small.

Furthermore, it is not stable along the time, if there is an error of approximation, the next iteration

can keep this error and, later, the result could be really farther of an acceptable result.

 Even if the Euler Integration is not perfect, it is easy to implement, for the cloth, the

equation described previously thanks to the Hooke’s law will be used.

II. Obstacles

The cloth is represented by a field of particles. It there isn’t any interaction of the cloth with

the environment, the one force which is uniformly applied to the particles is the gravity.

Furthermore, there isn’t any consideration of the viscosity of air then, without interaction with

obstacles, the cloth falls like a metal plane.

1. Collision detection

 For each particle, there is a position and a velocity vector. The position follows the velocity

vector. The ray tracing become very useful in this situation. A ray is throwing from the position of

the particle in the direction of the velocity. If there is a collision detected, the velocity vector is

corrected adding the reaction force.

Figure 2: Collision detection

2. Reaction forces

 To compute the reaction force applied on a particle when there is a collision, the third

Newton law is applied: “for every action, there is an equal and opposite reaction”.

 The previous figure presents the reaction force in green. This force depends of the normal of

the surface collided. This reaction force is added to the velocity and multiplied by a value to simulate

the friction.

 The collision is only tested on the particles and not on the edge of the cloths; furthermore,

the cloth is tensile with this resolution, so, it is more realistic to keep the velocity at null when the

particle is collided because the cloth could stretch until to thread the obstacle between two

particles.

Figure 3: Geometrical representation of the
reaction force (in red, the original force)

Chapter 2 – Design

 The application has to have a correct design to ease the development; the cloth particle

system is a black box for Maya plug-in classes. First, I will present the cloth classes, then, an

overview about Maya classes.

I. Cloth

1. Particles

The cloth is represented thanks to particles, each particles has a position and a fixed

number of neighbours. The function “Advance” applies by the Euler method the Hooke’s law

to store the new velocity in “m_velocity”, the function “UpdatePosition” displace the particle

following the velocity vector.

+Particle()

+Particle(in position : Vector)

+~Particle()

+SetInfos(in neighbours : Particle**, in NormalLength : float*, in nbNeighbours : int)

+getPos() : Vector

+Advance(in data : const DataCloth &)

+UpdatePosition()

+Move(in displacement : Vector)

+setPos(in newPos : Vector)

+getVelocity() : Vector

+setVelocity(in v : Vector)

-m_position : Vector

-m_velocity : Vector

-m_neighbours : Particle **

-m_normalLength : float *

-m_nbNeighbours : int

Particle

Figure 4: The particle class

2. Cloth

The cloth class contain an array of particles. This movement of the cloth is done by

the call of the “Advance” function. To create a cloth, we just need to send an array of vector,

the cloth class create link between the particles.

+Cloth(in vertices : Vector*, in NbVertices : int, in nbNeighbours : int)

+~Cloth()

+getPos(in i : int) : Vector

+SetPos(in i : int, in pos : Vector)

+Advance(in data : const DataCloth &)

+UpdatePosition()

+getVelocity(in i : int) : Vector

+setVelocity(in i : int, in NewVelo : Vector)

+setNbNeighbours(in nb : int) : bool

+Reset()

-searchCloser(in pos : Particle*, in nbNeighbours : int, in vertices : Particle*, in NbVertices : int, in outRes : Particle**, in outLength : float*)

-getIndMax(in in : float*, in size : int) : int

-Create(in vertices : Vector*, in NbVertices : int, in nbNeighbours : int)

-m_particles : Particle *

-m_nbparticles : int

-m_orgPos : Vector *

-m_nbNeighrs : int

Cloth

Figure 5: The cloth class

II. Maya

1. Command

The Maya command class is a child of MPxCommand. It became a component of

Maya. When the command cloth is called, the selected object is linked to a new cloth node.

+doIt(in Parameter1 : const MArgList &) : MStatus

+undoIt() : MStatus

+redoIt() : MStatus

+isUndoable() : bool

+creator() : void *

-dagMod : MDagModifier

ClothCmd

Figure 6: Cloth command class

2. Node

Like the command, the node is a child of a particular Maya class, “MPxNode”. This

node take a mesh in parameter to create a cloth, for each modification of time, the advance

function is called and the cloth animated. It is also in this component which computes

collision between the cloth and obstacles.

+~ClothNode()

+compute(in plug : const MPlug &, in data : MDataBlock &) : MStatus

+creator() : void *

+initialize() : MStatus

+id : MTypeId

+inTime : MObject

+inputMesh : MObject

+outputMesh : MObject

+dt : MObject

+gravity : MObject

+friction : MObject

+Neighbours : MObject

-m_cloth : Cloth *

-m_nbNeighbours : int

ClothNode

Figure 7: Node class

Chapter 3 – Implementing and result

I. The OpenGL application

To ease the development and make the cloth classes more portable, the cloth hasn’t

been implemented directly as a Maya plug-in. The first approach was to create a simple

application to test the algorithms. This application is on a QT environment with OpenGL and

creates a mesh of a hundred vertices to debug the cloth.

This technique is very useful because it is not easy to use possibilities of debug tools

when a Maya plug-in is compiled. When cloth classes are enough tested, it is possible to

begin the project for integration in Maya.

Figure 8: Overview of the first application

II. Maya plug-in
The Maya plug-in is composed of two elements, a command called “cloth” and a

node called “ClothNode”.

Figure 9: Plug-in informations

When the cloth command is called with a shape selected, this last became a cloth,

and the animation is played on each new key frame and reset at the frame 0. The obstacles

are not linked to the node, every object which has been called “obs*”are considered as

obstacle.

Figure 10: Overview of the hypergraph of the cloth

 This node has several settable parameters. “Delta T” represents the value which scales the

force vector of springs. “Gravity” is a vector which defines a force applied uniformly on every

particle. When the friction term is equal to 0, it does not mean that there is not any friction, the

friction is infinite and a particle which collide an obstacle “stick” to it. Finally, it is possible to change

the numbers of neighbours for each particle but this modification will reset the cloth because it is

necessary to reconstruct all links between particles. The cloth is more realistic with a lot of

neighbours but it became also really slower.

Figure 11: Parameters of the cloth node

III. MEL
A user interface has been created to ease to use of the nodes. The obstacles simply

are a mesh with the name which begins by “obs”. The MEL interface indicates the list of

elements which are obstacles. It is possible to convert a selected object as an obstacle; in

fact, this option will rename the shape.

This user interface is a shortcut to the editable values of the cloth node; the current

frame became 0 when the user decided to reset the cloth. It is possible to load some sample

scenes but these actions will delete the entire object on the current scene.

Figure 12: User interface created thanks to a MEL script

Conclusion

 There are still some bugs not resolved in the final application. There isn’t enough check for

errors but the plug-in is functional and can render interesting scenes. Like it is expected, the cloth is

tensile and slow, but the effect is nice.

 It could be interesting to implement the large step simulation, but it was an ambitious

objective, the Maya API and the cloth simulation were new for me. If I have to the same kind of

project later, I will choose the large step simulation because it is more stable, realistic and faster.

 This project was very interesting; I hope I will have again the possibility to work for this kind

of project. I have learnt a lot about the development of plug-in for software, the error checking

should be more integrated but it was my first attempt of this kind of programming. My skills in

procedural animation are really improved; the cloth simulation is a good example of possibilities of a

simple mathematical concept applied in computer sciences to generate impressive visual effects.

Figure 13: Some render samples

Figure list

FIGURE 1 : SPRINGS LINKS 4

FIGURE 2: COLLISION DETECTION 5

FIGURE 3: GEOMETRICAL REPRESENTATION OF THE REACTION FORCE (IN RED, THE ORIGINAL FORCE) 6

FIGURE 4: THE PARTICLE CLASS 7

FIGURE 5: THE CLOTH CLASS 8

FIGURE 6: CLOTH COMMAND CLASS 8

FIGURE 7: NODE CLASS 9

FIGURE 8: OVERVIEW OF THE FIRST APPLICATION 10

FIGURE 9: PLUG-IN INFORMATIONS 11

FIGURE 10: OVERVIEW OF THE HYPERGRAPH OF THE CLOTH 11

FIGURE 11: PARAMETERS OF THE CLOTH NODE 12

FIGURE 12: USER INTERFACE CREATED THANKS TO A MEL SCRIPT 13

FIGURE 13: SOME RENDERS SAMPLES 14

file:///C:\Documents%20and%20Settings\Shadiest\Mes%20documents\Visual%20Studio%202005\Projects\Cloth\PAN.docx%23_Toc198565376
file:///C:\Documents%20and%20Settings\Shadiest\Mes%20documents\Visual%20Studio%202005\Projects\Cloth\PAN.docx%23_Toc198565377
file:///C:\Documents%20and%20Settings\Shadiest\Mes%20documents\Visual%20Studio%202005\Projects\Cloth\PAN.docx%23_Toc198565382
file:///C:\Documents%20and%20Settings\Shadiest\Mes%20documents\Visual%20Studio%202005\Projects\Cloth\PAN.docx%23_Toc198565384
file:///C:\Documents%20and%20Settings\Shadiest\Mes%20documents\Visual%20Studio%202005\Projects\Cloth\PAN.docx%23_Toc198565385
file:///C:\Documents%20and%20Settings\Shadiest\Mes%20documents\Visual%20Studio%202005\Projects\Cloth\PAN.docx%23_Toc198565386
file:///C:\Documents%20and%20Settings\Shadiest\Mes%20documents\Visual%20Studio%202005\Projects\Cloth\PAN.docx%23_Toc198565387

